
Patterns	of	Interaction	2:	
Publish-Subscribe

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.6

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Key	Points	for	Lesson	10.6
• Publish-Subscribe	is	a	programming	pattern	for	

implementing	push-style	communication	between	objects	
over	time.

• In	pub-sub,	a	publisher	keeps	a	list	of	subscribers.
• When	the	publisher	changes	state,	it	sends	a	message	

notifying	each	of	its	subscribers	about	the	state	change.
• Each	subscriber	changes	its	local	state	to	take	note	of	the	

messages	it	receives	from	the	publisher.
• Now,	the	subscriber	can	consult	its	local	state	instead	of	

sending	queries	to	the	publisher.
• Good	if	queries	are	much	more	frequent	than	state	

changes.

2



How	to	organize	collaborating	objects?

• Principle	of	Least	Knowledge:		
• Reveal	only	what's	necessary.

• Problem:	how	does	the	information	get	to	
where	it's	needed?

• We've	already	talked	about	this	a	little	in	
Lesson	10.1

• What	happens	in	a	stateful system?

3

First	rule	of	good	
OO	Design!



How	does	a	ball	decide	when	to	
bounce	in	ball-factory.rkt?

4Ball	pulls info	from	the	wall

In	ball-factory.rkt,	
every	time	the	ball	
receives	an	on-tick
message,	it	asks	its	
wall	for	the	location	
of	its	right	edge.		
This	is	a	pull	model.	

Diagrams	like	this	
are	called	sequence	
diagrams in	UML.



Can	we	do	better?

• Each	ball	asks	the	wall	about	its	position	at	
every	tick.

• But	this	information	doesn't	change	very	
often.

• Better	idea:	Have	the	wall	send	a	"changed-
edge"	message	to	the	balls	only	when	the	
edge	actually	changes.

5



This	is	a	pushmodel

• When	information	changes,	the	person	who	
changes	it	pushes	it	out	to	the	people	who	
need	to	know.

• How	does	the	information-changer	know	who	
to	tell?		
– The	information-needer must	register with	the	
information-changer.

6



Push	model,	cont'd

• So	each	ball	must	tell	the	wall	that	it	needs	to	
hear	about	changes	in	the	edge	position.

• This	means	that	the	balls	will	now	need	to	be	
stateful,	too,	so	the	wall	can	find	them.

• This	pattern	is	called	publish/subscribe
– also	called	the	observer pattern.

7



Updated	interfaces:
;; Additional method for Ball:

(define SBall<%>
(interface (SWidget<%>)

; Int -> Void
; EFFECT: updates the ball's cached value of the wall's position
update-wall-pos

))

;; Additional method for Wall:

(define SWall<%>
(interface (SWidget<%>)

; SBall<%> -> Int
; GIVEN: An SBall<%>
; EFFECT: registers the ball to receive position updates from this wall.
; RETURNS: the x-position of the wall
register

))

8

We	say	the	ball	contains	a	cache of	the	wall's	
position.		This	is	analogous	to	a	memory	cache.	
If	you	are	not	 familiar	with	the	idea	of	a	cache,	
you	should	go	look	it	up.		It's	a	neat	and	widely-

used	pattern.

We	use	the	prefix	"S"	for	"stateful"	
or	"stable".		So	SBall<%>	is	the	
interface	for	stateful balls.



Add	code	to	Ball%
(define Ball%
(class* object% (SWidget<%>)

(init-field w)  ;; the Wall that the ball should bounce off of

;; initial values of x, y (center of ball)
(init-field [x INIT-BALL-X])
(init-field [y INIT-BALL-Y])
(init-field [speed INIT-BALL-SPEED])

...

;; register this ball with the wall, and use the result as the
;; initial value of wall-pos
(field [wall-pos (send w register this)])

(super-new)

;; update-wall-pos : Int -> Void
;; EFFECT: updates the ball's idea of the wall's position to the
;; given integer.
(define/public (update-wall-pos n)
(set! wall-pos n))

9

When	the	ball	is	
initialized,	 it	registers	
with	the	wall.		The	wall	

responds	with	its	
current	position.	 	This	
means	we	can	add	
balls	even	after	the	
wall	has	been	moved.



Add	code	to	Wall%
(define Wall%
(class* object% (SWall<%>)

(init-field [pos INITIAL-WALL-POSITION]) ; the x position of the wall

...

(field [balls empty]) ;; the list of registered balls

(super-new)

;; the extra behavior for Wall<%>
;; (define/public (get-pos) pos)

;; register : SBall<%> -> Int
;; EFFECT: registers the given ball
;; RETURNS: the current position of the wall
(define/public (register b)
(begin
(set! balls (cons b balls))
pos))

10



And	the	wall	needs	to	publish	
whenever	its	position	changes

; after-drag : Integer Integer -> Void
; GIVEN: the location of a drag event
; STRATEGY: Cases on whether the wall is selected.
; If it is selected, move it so that the vector from its position to
; the drag event is equal to saved-mx.  Report the new position to
; the registered balls.
(define/public (after-drag mx my)
(if selected?

(begin
(set! pos (- mx saved-mx))
(for-each

(lambda (b) (send b update-wall-pos pos))
balls))

this))

11



How	does	a	ball	decide	when	to	
bounce	in	publish-subscribe.rkt?

12wall	pushes information	to	the	ball

Here’s	a	similar	diagram	
showing	what	happens	
in	publish-subscribe.rkt

1.	When	the	ball	is	created,	
it	subscribes	 to	notifications	
from	the	wall	and	receives	
an	initial	value	for	its	local	
wall-pos field

2.	When	the	wall	receives	a	
mouse	drag,	it	sends	out	a	
message	to	all	its	
subscribers	notifying	 them	
of	the	new	location	of	the	
edge.	

3.	When	the	ball	receives	
this	message,	it	updates	
its	local	wall-pos field.

4.	When	the	ball	
receives	an	on-tick	
message,	it	
consults	its	local	
wall-pos field	to	
determine	 the	
current	location	of	
the	right	edge.

This	is	a	pushmodel:	 	the	wall	
pushes	 information	 to	the	ball	
for	the	ball’s	later	use.



Initializing	the	world
;; initial-world : -> WorldState
;; RETURNS: a world with a wall, a ball, and a factory
(define (initial-world)

(local
((define the-wall (new Wall%))
(define the-ball (new Ball% [w the-wall]))
(define the-world

(make-world-state 
empty ; (list the-ball)  -- the ball is now stateful
(list the-ball the-wall)))

(define the-factory
(new BallFactory% [wall the-wall][world the-world])))

(begin
;; put the factory in the world
(send the-world add-stateful-widget the-factory)
the-world)))

13



But	wait:	this	doesn't	quite	work

• If	you	run	this,	you'll	see	that	the	ball	doesn't	
quite	bounce	at	the	right	places.

• What	happened?
• Hmm,	must	be	time	to	think	harder	about	
testing	and	debugging	stateful systems.

14



In	our	next	lesson

• We'll	see	how	to	test	and	debug	stateful
objects

• In	particular,	we'll	see	how	we	found	the	bug	
in	our	system.

15



Reasons	to	use	publish-subscribe

• Metaphor:		
– "you"	are	an	information-supplier
– You	have	many	people	that		depend	on	your	
information

• Your	information	changes	rarely,	so	most	of	
your	dependents'	questions	are	redundant

• You	don't	know	who	needs	your	information

16



Other	uses	of	publish-subscribe

• Use	whenever	you	need	to	disseminate	
information	to	people	you	don't	know.

• They	sign	up	once,	and	then	you	promise	to	
update	them	when	something	happens	to	you	
(eg your	information	changes)

• Both	you	and	your	subscribers	must	be	
stateful.

17



Summary
• Objects	may	need	to	know	each	other's	identity:
– either	to	pull information	from	that	object
– or	to	push information	to	that	object

• Publish-subscribe	enables	you	to	send	
information	to	objects	you	don't	know	about
– objects	register	with	you	("subscribe")
– you	send	them	messages	("publish")	when	your	
information	changes

– must	agree	on	protocol	for	transmission
• eg:	(send <subscriber> method-name <data>)

– it's	up	to	receiver	to	decide	what	to	do	with	the	data.

18



Next	Steps

• Study	10-5-push-model.rkt	in	the	Examples	
folder.

• Can	you	find	the	bug	without	looking	ahead?
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

19


